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Abstract

Pion valence distributions in nuclear medium and vacuum are studied in a light-front
constituent quark model. The in-medium input for studying the pion properties is
calculated by the quark-meson coupling model. We find that the in-medium pion
valence distribution, as well as the in-medium pion valence wave function, are sub-
stantially modified at normal nuclear matter density, due to the reduction in the
pion decay constant.
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Introduction: Light-front constituent quark model (LFCQM) has been very
successful in describing the hadronic properties in vacuum, in particular, the
electromagnetic form factors, electromagnetic radii and decay constants of
pion and kaon [1,2,3,4,5,6]. On the other hand, recent advances in exper-
iments make it possible to access to these hadronic properties in nuclear
medium [7,8,9,10,11].

Among the all hadrons, pion is the lightest, and it is believed as a Nambu-
Goldstone boson, which is realized in nature emerged by the spontaneous
breaking of chiral symmetry. This Nambu-Goldstone boson, pion, plays very
important and special roles in hadronic and nuclear physics [12,13,14,15,16,17,18,19,20,21,22,23].

However, because of its special properties, particularly the unusually light
mass, it is not easy to describe the pion properties in medium as well as
in vacuum based on naive quark models, even though such models can be
successful in describing other hadrons. Recently, we studied the properties
of pion in nuclear medium [10,11], namely, the electromagnetic form factor,
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charge radius and weak decay constant, using a light-front constituent quark
model. There, the in-medium input was calculated by the quark-meson cou-
pling (QMC) model [7,24]. We have predicted the in-medium changes of pion
properties [10,11]: (i) faster falloff of the pion charge form factor as increasing
the negative of the four-momentum transfer squared, (ii) increasing of the root
mean-square radius as increasing nuclear density, and (iii) decreasing of the
decay constant as increasing nuclear density. In this work, we extend our work
for the pion in medium [10,11], and study the pion valence distribution ampli-
tude, and parton distribution function in symmetric nuclear matter. We find
a substantial modification of the pion valence wave function and distribution
amplitude in nuclear medium at normal nuclear matter density.

The Model: The light-front constituent quark model (LFCQM) we use here [3,4]
is quite successful in describing the properties of pion in vacuum, such as
the electromagnetic form factor, charge radius and weak decay constant. The
model was also extended for kaon in Ref. [5]. This fact is a prerequisite to study
the in-medium changes of pion and kaon properties. In this study, we focus on
the pion. For some in-medium properties of pion studied, see Ref. [10]. Note
that, we simply use the terminology medium or nuclear medium hereafter,
instead of explicitly specifying symmetric nuclear matter, otherwise stated.

In order to study the in-medium pion properties, we use the input calculated
by the quark-meson coupling (QMC) model [7], the same as that already done
in Ref. [10]. The QMC model was invented by Guichon [24] to describe the
nuclear matter based on the quark degrees of freedom. The self-consistent
exchange of the scalar-isoscalar σ and vector-isoscalar ω mean fields coupled
directly to the relativistic confined quarks, are the key and novelty for the new
saturation mechanism of nuclear matter. The model was extended, and has
successfully been applied for various nuclear and hadronic phenomena [7]. In
the following we briefly summarize the input used for the present study of the
pion properties in nuclear medium.

The mass of the light quarks (q and q̄, with q = u, d) in the light-front con-
stituent quark model in vacuum [10] is, mq = mq̄ = 220 MeV. Then, all the
nuclear matter saturation properties are generated by using this light quark
mass value. In other words, the different values of mq in vacuum generate
the corresponding different nuclear matter properties, except for the satura-
tion point of the symmetric nuclear matter, ρ = ρ0 (normal nuclear matter
density) with the empirically extracted binding energy of 15.7 MeV. This sat-
uration point condition is generally used to constrain the models of nuclear
matter.

As an example, we show in Fig. 1 negative of the binding energy, Etot/A−mN ,
for symmetric nuclear matter calculated by the QMC model with the vacuum
value mq = mq̄ = 220 MeV. The corresponding incompressibility K obtained

2



0 0.5 1 1.5 2 2.5 3
ρ/ρ0

-20

-10

0

10

20

30

40

50

60

(E
to

t  /
 A

) 
- 

m
N

  [
M

eV
]

Fig. 1. Negative of the binding energy per nucleon for symmetric nuclear matter,
(Etot/A)−mN , as a function of nuclear density ρ (ρ0 = 0.15 fm−3) with the quark
mass value mq = mq̄ = 220 MeV (q = u, d), calculated by the QMC model. The
corresponding incompressibility K obtained is K = 320.9 MeV.

is K = 320.9 MeV. For the other quantities calculated with mq = mq̄ = 220
MeV, see Ref. [10]. Here, we note that the pion mass up to normal nuclear
matter density is expected to be modified only slightly, where the modification
δmπ at nuclear density ρ = 0.17 fm−3, averaged over the pion isospin states,
is estimated as δmπ ≃ +3 MeV [8,25,26,27]. Therefore, we approximate the
effective pion mass value in nuclear medium to be the same as in vacuum,
m∗

π ≃ mπ, up to ρ = ρ0 = 0.15 fm−3, the maximum nuclear matter density
treated in this study. Furthermore, since the light-front constituent quark
model is rather simple, and based on a naive constituent quark picture, the
model cannot discuss the chiral limit of vanishing (effective) light quark mass.

We next study the pion properties in symmetric nuclear matter with the input
calculated by the QMC model. The effective interaction Lagrangian density
for the quarks and pion in medium is given by,

Leff =−ig∗ (q̄γ5~τq · ~φ) Λ∗ , (1)

where the coupling constant, g∗ = m∗

q/f
∗

π , is obtained by the ”in-medium
Goldberger-Treiman relation” at the quark level, with m∗

q and f ∗

π being re-
spectively the effective constituent quark mass and pion decay constant in
medium, ~φ the pion field [3,4,5], and Λ∗ is the π-q-q̄ vertex function in medium.
Hereafter, the in-medium quantities are indicated with the asterisk, ∗.
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Symmetric pion valence wave function: The pion valence wave function used
in this study, to calculate the pion distribution amplitude (PDA) [28,29] and
parton distribution function (PDF) [30,31], is symmetric under the exchange
of quark and antiquark momenta. This π-q-q̄ vertex function, Λ in vacuum, is
the same as that used for studying the properties of pion [3,4,32] and kaon [5].
But for the in-medium Λ∗, the arguments of the function are replaced by
those of the in-medium. The Bethe-Salpeter amplitude in medium, Ψ∗

π, with
the vertex function in medium Λ∗ is given by,

Ψ∗

π(k + V, P )=
/k + /V +m∗

q

(k + V )2 −m∗2
q + iǫ

γ5Λ∗(k + V, P )

× /k + /V − /P +m∗

q

(k + V − P )2 −m∗2
q + iǫ

, (2)

where V µ = δµ0V
0 is the vector potential felt by the light quarks in the pion

immersed in medium, and can be eliminated by the variable change in the k-
integration, kµ + δµ0V

0 → kµ. Furthermore, by eliminating the instantaneous
terms, namely eliminating the terms with gamma matrix γ+ in the numerators
and k+ and (P+ − k+) in the denominators with the light-front convention
a± ≡ a0 ± a3, and integrating over the light-front energy k−, we obtain the
in-medium pion valence wave function Φ∗

π,

Φ∗

π(k
+, ~k⊥;P

+, ~P⊥) =
P+

m∗2
π −M2

0

[

N∗

(1− x)(m∗2
π −M2(m∗2

q , m2
R))

+
N∗

x(m∗2
π −M2(m2

R, m
∗2
q ))

]

, (3)

where, N∗ = C∗(m∗

q/f
∗

π)(NC)
1

2 (Nc the number of colors), is the normalization

factor [3,4,10], and x = k+/P+ with 0 ≤ x ≤ 1; M2(m2
a, m

2
b) =

~k2
⊥
+m2

a

x
+

(~P−~k)2
⊥
+m2

b

1−x
− ~P 2

⊥
, and the square of the mass M2

0 , is M
2
0 = M2(m∗2

q , m∗2
q ). For

the details of how the in-medium pion valence wave function is obtained, see
Refs. [3,10]. Note that the model used in Refs. [2,33] does not have the second
term in Eq. (3). This means that the pion valence wave function in Refs. [2,33]
is not symmetric under the exchange of quark and antiquark momenta.

The present model with the symmetric vertex [3,4,5,32], was demonstrated
successful in describing the pion properties in nuclear medium [10,11]. The
pion transverse momentum probability density in medium, P ∗

π (k⊥), in the
pion rest frame P+ = m∗

π is calculated by,
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Table 1
Properties of pion in medium, taken from Ref. [10], with ρ0 = 0.15 fm−3.

ρ/ρ0 m∗
q [MeV] f∗

π [MeV] < r∗2π >1/2 [fm] η∗

0.00 220 93.1 0.73 0.782

0.25 179.9 80.6 0.84 0.812

0.50 143.2 68.0 1.00 0.843

0.75 109.8 55.1 1.26 0.878

1.00 79.5 40.2 1.96 0.930

P ∗

π (k⊥) =
1

4π3m∗
π

∫ 2π

0
dφ

∫ m∗
π

0

dk+M∗2
0

k+(m∗
π − k+)

|Φ∗

π(k
+, ~k⊥;m

∗

π,~0)|2, (4)

and the integration over k⊥ for P ∗

π (k⊥) leads to the in-medium probability of
the valence component in the pion, η∗ [3,4,10]:

η∗ =
∫

∞

0
dk⊥k⊥P

∗

π (k⊥). (5)

The pion decay constant in medium in terms of the pion valence component is
obtained by integrating Φ∗

π(k
+, ~k⊥;m

∗

π,~0) over the light-front energy k− [3,10]:

f ∗

π =
m∗

q(Nc)
1/2

4π3

∫

d2k⊥dk
+

k+(m∗
π − k+)

Φ∗

π(k
+, ~k⊥;m

∗

π,~0). (6)

Some properties of the pion in symmetric nuclear matter obtained [10], are
summarized in table 1.

The results listed in table 1 are summarized as follows. As the nuclear density
increases, the in-medium effective constituent quark mass, m∗

q , and the pion
decay constant, f ∗

π , decrease, while the square root mean charge radius, <
r∗2π >1/2, and the probability of valence component in the pion, η∗, increase.
This can be understood as follows. The reduction in mass, m∗

q, makes easier
to excite the valence quark component in the pion, and resulting to increase
the valence component probability η∗ in the pion. Furthermore, the valence
wave function spreads more in the coordinate space by the decrease of m∗

q , and

reduces the absolute value of the wave function at the origin (f ∗

π ∝ |Φ∗

π(~r = ~0)|
reduction [34]), namely, increases < r∗2π >1/2.

In-medium pion Distribution Amplitude: Pion distribution amplitude (PDA)
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Fig. 2. Pion valence wave functions in vacuum (ρ = 0) [left panel] and in medium
(ρ = ρ0) [right panel] v.s. x and k⊥ = |~k⊥|, where P+ = mπ = m∗

π and
P⊥ = |~P⊥| = 0. The wave functions are given in the units, 10−8×(GeV)−1. No-
tice that the differences in the vertical axis scales for the left and right panels.

provides information on the nonperturbative regime of the bound state nature
of pion due to the quark and antiquark at higher momentum transfer, and it
was calculated with different approaches, such as QCD sum rules [35,36], and
lattice QCD [37]. Our study here is based on the light-front constituent quark
model.

The pion valence wave function in vacuum is normalized by [38,39] (aside from
the factor

√
2 difference):

∫ 1

0
dx

∫

d2k⊥
16π3

Φπ(x,~k⊥) =
fπ

2
√
6
. (7)

This is an important constraint on the normalization of the qq̄ wave func-
tion [38,39], associated with a probability of finding a pure qq̄ state in the
pion. According to this normalization, the in-medium pion valence wave func-
tion is normalized by replacing fπ → f ∗

π in the above. Since the pion decay
constant in nuclear medium is modified, the pion valence wave function in
nuclear medium is also modified via this normalization.

In order to examine more in detail as to how the change in f ∗

π impacts on
the in-medium pion valence wave function, we show in Fig. 2 the pion valence
wave functions in vacuum (left panel) and ρ = ρ0 (right panel).

One can notice that the in-medium pion valence wave function in momentum
space has a sharper peak and localized narrower regions both in x and k⊥ than
those in vacuum. Of course, the total volume, the quantity integrated over x

6



0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

3

3.5

φ∗ D
A

(x
) 

 x
 1

0-8
 [

G
eV

-1
]

ρ/ρ0 = 0.00

ρ/ρ0 = 0.25

ρ/ρ0 = 0.50

ρ/ρ0 = 0.75

ρ/ρ0 = 1.00

0 0.2 0.4 0.6 0.8 1
x

0

0.25

0.5

0.75

1

φ∗ D
A

(x
)/

φ D
A

(x
)

ρ/ρ0 = 0.25

ρ/ρ0 = 0.50

ρ/ρ0 = 0.75

ρ/ρ
0
 = 1.00

Fig. 3. Pion valence distribution amplitudes (left panel), and the ratios divided by
that of the vacuum (right panel). (See also table. 1.)

and ~k⊥, is reduced in medium, corresponding to the reduced f ∗

π . This fact
is reflected in the wave function in coordinate space, that it becomes spread
wider, and generally reduces its hight.

The corresponding pion distribution amplitude (PDA) in medium, φ∗

DA(x)
(not normalized to unity), is obtained by integrating over x:

φ∗

DA(x) =
∫

d2k⊥
16π3

Φ∗

π(x,
~k⊥). (8)

Note that, Eq. (8) holds also for the other pseudoscalar mesons Mps such as

kaon and D-meson, by replacing Φ∗

π(x,
~k⊥) → Φ∗

Mps
(x,~k⊥) in the above.

We show in Fig. 3 the PDAs in vacuum φDA(x) and in medium φ∗

DA(x) (left
panel), and the ratios divided by the vacuum one φDA(x) (right panel).

Indeed, the significant reduction of the in-medium PDA (φ∗

DA(x)) is obvious
in Fig. 3, reflecting the reduction of f ∗

π .

Next, we study PDA normalized to unity, or parton distribution function
(PDF). By this, we can study the change in shape due to the medium effects.
We show in Fig. 4 the calculated PDFs both in vacuum φ(x) and in medium
φ∗(x) (left panel), and their magnifications (right panel).

The in-medium change in shape is moderate when the nuclear matter densities
are small, but it becomes evident when the density is ρ0.

Next, it may be useful to define effective parton distribution function (EFF-
PDF) for pion using the valence probability in vacuum η and and in medium
η∗. (See Eq. (5) and table 1.) The pion states in vacuum, |π >, and in medium,
|π >∗, can respectively be written as,
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Fig. 5. Effective pion valence parton distribution functions in vacuum and in
medium, respectively multiplied by

√
η and

√
η∗.

|π >=
√
η|qq̄ > +a|qq̄qq̄ > +b|qq̄g > + · · · , (9)

|π >∗=
√
η∗|qq̄ >∗ +c|qq̄qq̄ >∗ +d|qq̄g >∗ + · · · , (10)

where a, b, c and d are constants, and g denotes a gluon, and + · · · stands for
the higher Fock components in the pion states. The quantity η∗ in table 1
indicates that the valence qq̄ component in the pion state increases in medium
as nuclear density increases. The EFFPDFs in vacuum,

√
ηφ(x), and that in

medium,
√
η∗φ(x)∗, are shown in Fig. 5. They respectively correspond to the

first terms of Eqs. (9) and (10).
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Since η∗/η is enhanced in medium, EFFPDF in medium is also enhanced, on
the top of the corresponding medium-modified PDF. The obvious enhance-
ment of EFFPDF in medium can be seen around x = 0.5. This quantity may
be useful when one studies some reactions in medium (in a nucleus) involving
a pion, based on a constituent quark picture of pion.

To summarize, we have studied the impact of in-medium effects on the pion
valence distribution amplitudes and parton distribution function using a light
front constituent quark model, combined with the in-medium input for the
constituent quark properties calculated by the quark-meson coupling model.
The in-medium constituent quark properties inside the pion are consistently
constrained by the saturation properties of symmetric nuclear matter.

The in-medium pion mass is assumed to be the same as that in vacuum,
based on the extracted information from the pionic-atom experiment, and
some theoretical studies. This information extracted is valid up to around
the normal nuclear matter density. Thus, the results obtained in this study,
combined with the light-front constituent quark model, are valid up to around
the normal nuclear matter density, but cannot discuss reliably the chiral limit,
the vanishing limit of the (effective constituent) quark mass. We need to rely
on more advanced models of pion to be able to discuss the chiral limit in
medium, as well as in vacuum.

Due to the reduction in the pion decay constant in medium, the pion dis-
tribution amplitude in medium normalized with the pion decay constant, is
appreciably reduced in nuclear medium. Because the valence component prob-
ability in medium increases as nuclear density increases, we have defined an
effective pion distribution function normalized to the square root of the va-
lence probability in the pion state. This may give some information for the
effectiveness of the valence quark picture of pion in nuclear medium. Within
the present approach, the effectiveness of the valence quark picture of the pion
in medium, becomes more enhanced as nuclear density increases, due to the
increase of the valence component in the pion state.

Although the present study is based on a simple, light-front constituent quark
model, this is a first step to understand the impact of the medium effects on
the internal structure of the pion immersed in nuclear medium. In the future,
we plan to make similar studies for kaon, D-meson, and ρ-meson in nuclear
medium.
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