Brief Overview: Pion and Kaon Structure
Functions

U Pion and kaon structure functions play an important role in understanding
the origin of mass.

» Proton has three quarks and a mass of about 1 GeV. Take
one of the quarks away to get a pion and get a mass that’s
much less than 1/3 of the proton mass — Why?

» Do the same and check out the kaon mass: get about one half
of the proton mass — strange?

» Pion and kaon structure is different — can it explain mass?

O Data are sparse. We know essentially nothing about the contribution of sea
guarks and gluons

0 Some nomenclature: F2== a (dynamic) structure function accounting for the
substructure of a particle and allows access to the PDFs=Parton Distribution

Function



Objective: Pion and Kaon PDFs

Goal: Impact of projected F2 data on pion (kaon) PDFs?

HWhat needs to be done:

.

~

» Projected F2 data for pion and kaon from the Sullivan process with flexible

choice of x and QZ2 bins — simulation

» With projected F2 data, see what uncertainties one gets for, e.g. the
gluon PDFs.

» Develop/improve upon statistical models, e.g. M. Alberg et al. — here, get

the proton, pion, kaon PDFs from a detailed balance statistical approach

/




Introduction and Background



Motivation: quarks, gluons, hadrons...

O The strong force is described in terms of coloured quarks and gluons

T 1. a 1 1e3 12
Locp = ¥ (iv"8, — m) ¢ — g(?,b’}f”Tazb)A —ZG’ LGE

“color”
a quark a gluon
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O But, only colour-neutral hadrons can be detected — colour confinement

» How can one understand pions, kaons, protons or
neutrons in terms of quarks and gluons?




Hadrons are made of quarks

Q 6 flavours (and 3 colours)

» Up, down, strange
» Charm, bottom, top

» Spin 1/2
» Isospin (u=1/2, d=-1/2)
» Strangeness (s=1)

1 Confined in colourless hadrons

» Mesons — 2 quarks
» Baryons — 3 quarks
» Tetraquarks - ?

» Pentaquarks - ???



Nucleons are made of 3 quarks...
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» X s the fraction of momentum carried by a
quark in a nucleon momentum moving P
quickly to the right (here)



..and gluons, and sea quarks...
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» X s the fraction of momentum carried by a
quark in a nucleon momentum moving P
quickly to the right (here)




..and gluons, and sea quarks...
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» X s the fraction of momentum carried by a
quark in a nucleon momentum moving P
quickly to the right (here)



..spinning and orbiting around...and interacting




How to probe the nucleons / quarks?

Electron/lepton scattering
experiments employ high

1 10" momentum point-like leptons,
+ electromagnetic interactions,
which are well understood, to
probe hadronic structure
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Charge and Magnetic Moment Distributions

dQ
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 Form Factors are (in some limit) Fourier transforms of charge and
magnetic moment distributions
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The form factor as a Fourier transformation of the charge distribution is a non-relativistic concept.
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Form Factor

How Do the Charge and Magnetic Moment Distribute?
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The Q? dependence of form factors was measured...
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Caveat: The Form Factor as the Fourier transformation of a charge distribution is a
non-relativistic concept. 12



Matter Puzzle: What's Inside the Proton?

» s the proton elementary?

h
To find out increase the probe’s ability of resolving structure (decrease 6)
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Looking deep inside the Proton
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Structure Functions in Deep Inelastic Electron-Nucleon

Scatteri ng

Probability of inelastic interaction:

d?o B a’ ,0 1F( 2)+2F( )¢ ,0
J0dE COoS " >(x,Q v x,(“) tan >

4E*, sin* > 1 /

Unpolarized “Structure Functions” F,(x,Q?)
and F,(x,Q?):

, = Account for the sub-structure of the
¢ 1.5 < Q(GeV/c) <4
} 5<Q¥GeVicR < 11 protons and neutrons
F b 12 < Q¥(GeV/c) < 16 )
- : v -  x = fraction of nucleon momentum

carried by struck quark

- spin %4
l [ (] \ = Give access to partonic structure of the
Lo---—é-{g-i,%,-.} i #‘.TL}LL___.. nucleon, i.e.
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l

0.5

spin 0 « Comparing the DIS cross section formula with

Same as if target was a \ \ the Mott and Dirac elastic cross sections for

free spin V2 particle: the particles of mass m = xM and spin 1/2

photon is scattering on x ! - If point-like constituents were spin zero
AREERIEERTE S particles, we would expect F, to be zero




Fast forward....

30+ years of charged lepton Deep Inelastic Scattering
at multiple laboratories including SLAC (to ~2000),
CERN 80-90s EMC, NMC, BCDMS..), DESY (90s —
215t century H1, ZEUS,...), and more!
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Q¢ Evolution of the F, Proton Structure Function

F,P Structure Function measured
over impressive range of x and Q2
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Scaling Violations

Proton structure function F,
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» Scaling violation is due to the fact
that the quarks radiate gluons
that can "materialize" as g-gbar
pairs (sea quarks)

» Increasing Q? increases the
resolution of the probe (~h/\Q?)
and thus increases the probability
of seeing these (abundant) low x
partons

o The parton distribution functions
(PDFs) can not be calculated from
first principle of QCD but their Q2
dependence is calculable in
perturbative QCD using the
DGLAP evolution equations
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Proton Structure Function F,

Q? dependence

Q2=2_7 GeVZ described by the

0 Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi

(DGLAP) evolution

equations

1 Increasing Q2:
- High x decrease
- Low xincrease

3 - \ Allows extraction of

0 | '3 ' | Parton Distribution
10 ] 1 Functions f(x,Q?)
2 .
— ZEUS NLO QCD fit through Q* evolution
X From high x, low Q to

[ 1 tot.error » BCDMS

high Q, low x

» E665
e ZEUS 96/97 NMC



Parton Distribution Functions and QCD Evolution
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Quantum Chromo Dynamics

Gluons are the messengers for the The strong force does not get weaker with
quark-quark interactions large distances (opposite to the EM force)
Quantum Chromo Dynamics (QCD ) and blows up at distances around 10-1°m
is the theory that governs their (the radius of the nucleon)
behaviour q
g o, T QED
q e |
Gluons carry color charge, and we can N~ ) ' V(r)=kir
draw 3- and 4- gluon diagrams (se/f- . g S
Interaction) -
Locp = Y(iv,DF —m)y l(.',,,,(."”/ b e
d ' There is no 1/r2 dependence! T =

21



vy Quantum ChromoDynamics

,916 David Gross, David Politzer
“and Frank Wilczek

At short distances

quarks move as though they are
free — Asymptotic freedom
Physics at short distance is
understood through
perturbation theory - a,(m,)=
0.1189(10)

Perturbative QCD tested up to
1% level

At longer distances
Confinement ensures that only
hadronic final states are
observed

Quarks can be removed from the
proton, but cannot be isolated!!!
We never see a free quark

QCD still unsolved in non-
perturbative region

Insights into soft phenomena
exist through qualitative models
and quantitative numerical
(lattice) calculations

22



Puzzles



Important alert: the deuteron is also a nucleus!

Neutron structure is typically derived from deuterium target data by subtracting
proton data

Large uncertainty in unfolding nuclear effects (Fermi motion, off-shell effects,
euteron wave function, coherent scattering, final state interactions, nucleon
structure modification ("EMC™-effect),...........
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&,&D.Bﬁ - —
~ : .
] EU‘BD - -
= i N
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F.,"/F,P (and, hence, d/u) is essentially unknown at large x:

- Conflicting fundamental theory pictures

- Data inconclusive due to uncertainties in deuterium nuclear corrections

8 -

b

] .
', +
i be "
++‘+

| N
. F_JF ;

2n 2p +

m Whitlow et al
4 Melnitchouk and Thomas
e Bodek et al

Your textbook may be lying...

G SU(6) symmetry

<«— PQCD
Je— DSE: 0" &1*qq

@ 0% Qg only

Review Articles:

N. Isgur, PRD 59 (1999),

S Brodsky et al NP B441 (1995),

W. Melnitchouk and A. Thomas PL B377 (1996) 11,
R.J. Holt and C. D. Roberts, arXiv:1003.4666 [nucl-th],
I. Cloet et al, Few Body Syst. 46 (2009) 1.
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Lar'ge Uncertainties on Lar'ge x Valence pdfs
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Lack of precision at large x hidden by fact that PDFs tend to zero



From Paul Newman

Higgs X-Section / Coupling PDF Uncertainties

Theoretical Uncertainties Projected Experimental
After N3LO calculation of gluon-fusion Uncertainties
Higgs cross section at 13 TeV > ATLAS Simulation _1
) Vs =14TeV: [Ldt=300 b ; [Ldt=3000 fb
much reduced scale uncertainty JLt-500 " oxrapelaic o 7+8 Tov

... largest sources
of unertainty:
- PDFs [1.9%]
- o [2.6%]
with additional
1.2% uncertainty on
non-availability of N3LO PDFs

[Anastasiou et al [1503.06056], Dulat, CERN Dec '15]

. 0 02 04 06 08
... much of Higgs sector becomes [Dashed regions = scale
PDF limited in HL-LHC era ... & PDF contributions -

8

(though it’s x~102, so not really today’s topic)



From Paul Newman

e.g. High Mass 2 Gluino Production

- Signature is excess @ large invariant mass
- Expected SM background (e.g. gg - gg)
poorly known for s-hat > 1 TeV.
- Both signal & background uncertainties driven
by error on gluon density ... essentially unknown
for masses much beyond 2 TeV

- Gluino Pair Production PDF Uncertain g-g production, § — qq i,

| I L] | L T L T I L I L T I T T T I | LI T T I I
— CTio L )
L of| T MsTW2008 3 2500 — ATLAS Simulation Preliminary -~ '™
— ::E:;l g~ B [Ldt-am.mm‘,ﬁ-u'rw
3 g — ABEKMOZ OHepton combinad =
v — | HEC 2000 ATLAE 203/ ", ¥ - B ToV, B5% CL F PD

ma s 9L CL b, 3000 B, ) < 140
mmmmna B9 CL e, M0 ", (o) - 6D
— Gt 000, - M0
—— o 00E ) .8

1500

ol vgrwes

1000

| LHC (14 TeV)

_I'E.S ITD 15 ZI.D 1?5 3I.I:I 3I.5 4?0 4I5 5.0 0 500 1000 1500 2000 2500 m
M; = M, [TeV] m; [GeV]



From Paul Newman

High x (Anti)-Quarks Matter Too ...

= ATLA « Data 2012
1;'!'5 10° ° o Oz P
ee: | Ldt=20.31 [Jrhoton-induced
105 T uarks q
1s=8TeV Wrorq
10* - OMulti-Jet & W+Jets — S
E [Joiboson q
10° B — Ay, =14 TeV
= A =14 TeV P_

=M, =3.5 TeV (GRW)

- BSM sensitivity through

ol oo vt oo vl vooed vood ool sl s

10f | excess in high mass Drell-Yan
213 = limited by high x antiquark
— 1 » *
goo AT ~ = uncertainties as well as

.l i . R . ‘
0.1 02 0304 3 a4
arXav:1407.2410 /mm[Tev] valence

... bottom line is that much of the LHC search programme will
become limited by the high x parton density uncertainties

as we head towards the ultimate lumi of the LHC unless
there is a transormation in precision in the meantime ...
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And then there is the

Pion and Kaon

30



World Data on pion structure function F,™

Pion Drell-Yan DIS (Sullivan

c
Data much 0cess)
more limited
than nucleon...
04 [ - _ _
; 2 F Q’=7.0GeV* |
035 | € 1_ =
03 — : =
0.25 - :
: F Q*2 120 GeV? | Q=
015 F 2 + o
0.1 — E
0.05 — ] e
- Q’= 1000 GeV*
s * ZEUS 95-97
N F;SMRS
- - — F}GRV
g TR - AT T T et e " [HERA data [ZEUS,
X, Xn X» NPB637 3 (2002)]
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Calculable Limits for Parton Distributions

O Calculable limits for ratios of PDFs at x = 1, same as predictive power of x 2> 1
limits for spin-averaged and spin-dependent proton structure functions
(asymmetries)

T u™ (:
= (z) = 0.37, i‘}"\f(‘r) = 0.29
uy () |, Sy () 5y

O On the other hand, inexorable growth in both pions’ and kaons’ gluon and sea-
quark content at asymptotic Q2 should only be driven by pQCD splitting
mechanisms. Hence, also calculable limits for ratios of PDFs at x = 0, e.g.,

-

u™ (z; () Agep/¢~0
lim (C) Q(E{C 1
z—0 u™(x; ()

32



Gluon Content in Kaon and Pion

Based on Lattice QCD calculations
and DSE calculations:

O Valence quarks carry 2/3 of the
kaon’s momentum at the light
front, at the scale used for Lattice
QCD calculations, or roughly 95%
at the perturbative hadronic scale

O At the same scale, valence-quarks
carry 52% of the pion’s light-front
momentum, or roughly 65% at the
perturbative hadronic scale

Thus, at a given scale, there is far
less glue in the kaon than in the pion

L 15t DSE analysis (Tandy et

0.0} al., fully numerical DSE !
0.90lutiops25  0.50  0.75 1.0
X

0.6F _C_Chen et al, Phys. Rev. DY:

% uin kaon, ‘(&616) .1\1 \s .bar in kaon
" \ s

Q 04y /
O
'lln
x 02
s

O 0 | [# data: Aicher et. al reanalysis of E615\.'“

0.25 0.50 1.0

X

0.75



Combined Fit to HERA LN and E866 DY Data

U.lE T T T T T T T T T

ot = 480 cevh QF = 1000 Gevt
O1F = 0032 | 4 b x=0032

M 0ol /

L)

0 0.1 0z 03 O 01 02 03

}
}
}
}

y = 0.06
y = 0.1
y =021
y = 0.27
HERA+ESE6 fit

ZEUS, NPEaA37, 3 (2002)
NPB 776, I(2007)

O Quality of fit depends on y-range fitted — to reduce model dependence fit up to y,,=0.3 to
which data can be described in term of © exchange

o Q2 = 8% GaV?
] — +
X et r—
W S ——
v2/dof=1.27 for 202 ‘E“ }
187+15) points = P
( )P Lot — |
10_2 10—1
T

—_—— —— ——

y = 0.095

y = 0.185

y = 0.275
—— HERA-+ES66 fit

HI EPJC 68, 381 (2010)

(] Best fits for largest number of points by t-dependent exponential (and t-monopole)

regulators



Extracted Pion Structure Function

--- 1 mon — PV . — HERA+ES66 fif,

é_ tﬁ{pi N Rege 1T \\\ -—- GRS ]

Pmmmesesst e Bighari | | o SMRS

- .
xhx .
Type equation here. {}
Yot :36% q L = ﬂ’:/‘y
B T T A T
Lo Lo

T a b .
FF=Nx2(1-x_)° a=a,+az
7~ log(logQ?)
U Stable values of F,™ at 4x10* ~<x_~<0.03 from combined fit
U Shape similar to GRS fit to =N Drell-Yan data (for x_>~0.2) but smaller magnitude
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Electroweak Pion and Kaon Structure Functions

U The Sullivan Process will be sensitive to u and dbar for the
C pion, and likewise u and sbar for the kaon.

O Logarithmic scaling violations may give insight on the role
of gluon pdfs

% O Could we make further progress towards a flavour
decomposition?

1) Using the Neutral-Current Parity-violating asymmetry Apv

longltudmally
2) Determine xF5 through neutral/charged-current interactions polarized ¢
F} =Z eZz(q+q)
In the parton model: F = ?’Z eq 0y (g +q) Use different couplings/weights
rFY =2 Z eq g4 T (g —q) Use isovector response

FV'=2z(@+d+s+e) FV'=2(-a+d+s—2) FV =2z(u+d+5+c) FY " =2(u—d—s+¢)

3) Or charged-current through comparison of electron versus positron interactions

= *4 - -y — ! g
oRnC 4 oC 3272 a? FJ 1+(1—1y)° FJ

A JEC'.E i UEC'E B G%—- Q-‘L F2H+ n F;}{_ 1_ [1 B y]z TF}{-I- - IF‘I}{__._

36



Disentangling the Flavour-Dependence (l)

1) Using the Neutral-Current Parity-violating asymmetry Apv €
4. = Or =G, longitudinally

PV . -

- _ c.+0 polarized ¢

2 2_q € 91 (4 +q) _6 ul +3d}t R-TL

ayr(x) = : o
SR A 1UES R D
23 a9y (g + ) N 6uj + 385

— 4sin? Oy,

aogc () = 5 — T - — 4sin” Oy
>, 2t a)  dug -+
C. Chen et al., Phys. Rev. D93 (2016), 11 Calculation by C.D. Roberts et al.
06 B I ’¢‘-."Q: 1.6 a (
S u in kaon ”—"{\ \‘ s.bar in kaon 2
® LN . 1« Colours denote diffégn
O !
S 04 ~ |. scales
Wt =
| © ol
N '
5 0.2 . 1 0.8 L aZ(
T Y | m)
X 4 _ _ N 0.6 |-
O O data: Aicher et. al reanalysis of E615 ™~ i , , , , ,
: 0.0 0.2 04 0.6 0.8 10

00 025 050 075 1.0 -

X a, picks up different behaviour of u and sbar.
DSE-based parton distributions in /' Flavour decomposition in kaon possible?

spion and kaon
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-

*C. ol ARG . .
S 2% What are we missing?

A\

N \

v : :l‘\ ".\. - \\\\\
- 5 A !

* We had hoped to find out how quarks and gluons and their
interactions give rise to the characteristics of the nucleons.

* Spin
* Mass
 Bulk

* We also hoped that we would be able to find out how NN
interactions work in terms of QCD.

* How nuclear forces arise.
* How nuclear characteristics come about

* We were able to do this kind of things with EM and atom:s.
e So what’s going on...

July 2017 38




What longitudinal factorization did

im  F(x,0°)=f®s
0°—slarge, x fixed

/

Function only of x (i.e. longitudinal momentum)
Our quarks and gluons as constituents of the proton only exist longitudinally.
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Limits of Longitudinal Information

infinite
momentum
frame

What is the quark and gluon structure of
the proton?

-orbital motion?

-color charge distribution?

-how does the mass come about?
-origin of nucleon-nucleon interaction?

What we know

Parton frozen transversely.
Framework does not
incorporate any transverse
information.

But this was the only way to

define quark-gluon structure
of proton in pQCD.
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Progress in pQCD Theory (~1980-~2010)

Factorization |l

Electron A::"hs;e .
'heh’rse N
Um
"~ Partons
Proton (P) //\ L e
Parton Distribution Functions: 3D (Transverse)\Strulgpyql:)e
Longitudinal only— TMD’s, GPD’s— ers, .
No way to interpret nucleon Now we know what to measuresto
partonic structure in rest frame understand the 3D structure of nucleons

Transverse Momentum Dependent Distributions (TMD): k,
Generalized Parton Distributions (GPD): b,

41



New Paradigm for Nucleon Structure

¢ TMDs
— Confined motion in a nucleon

(semi-inclusive DIS)

€ GPDs
— Spatial imaging
(exclusive DIS)

€ Requires
— High luminosity
— Polarized beams and targets

Parton Distribution Functions
1
e Q*=10 GeV?

—— HERAPDFL.7
@ cxp.uncert.

3 model uncert.
[ parametrization uncert

v HERAPDFL.6

................................




3D Imaging of Quarks and Gluons

W(X,br,kr)
Momentum [ dk Coordinate
space Jd2b, T space
fx.br) Gluons
A 66.2+<F()32:>1i.;-e2vt o , gr’ergy

4
x = 0.1

0
0 02 04 06 08 1 12 14 16

© = N w
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How to extract PDFs from Data?



How to extract PDFs from data

Problem:

— we need a set of PDFs in order to calculate a particular
hard-scattering process (say, at LHC)

Solution:
— Choose a data set for a set of different hard scattering processes
— Generate PDFs using a parametrized functional form at initial scale
Q_; evolve them from Q_ to any Q using DGLAP evolution equations
— Use the PDF to compute the chosen hard scatterings
— Repeatedly vary the parameters and evolve the PDFs again
— Obtain an optimal fit to a set of data.

Modern PDF sets: CTEQ-TEA (CT10), CTEQ-JLab (CJ10),
MSTW2008, NNPDF2.1, ABM11, JR, HERAPDF1.5



Global PDF fits as a tool

Test new theoretical ideas

— e.q., are sea-quarks antisymmetric? Is there any “intrinsic” charm?

Phenomenology explorations

— e.g., can CDF / HERA “excesses” be at all due to glue/quark
underestimate at large x?

Test / constrain models
— e.g., by extrapolating d/u at x=1
— Possibly, constrain nuclear corrections

Limitations

— existing data

— experimental errors
— theoretical errors



How to extract PDFs from data

Choice of data sets

Choice of kinematic cuts to perform calculations with confidence

Parametrized functional form for input PDFs at Q_

Definition of “optimal fit”

— typically by a suitable choice of ¢* function

Truncation of the perturbative series:
— LO; NLO (state-of-the-art)
— NNLO {fully available for DIS, DY — partially for other processes)

Treatment of errors

— Experimental, statistical and systematic
— Theoretical



Observables

Each observables involves a different linear combination, or product of PDFs:
a diverse enough set of observables is needed for parton flavor separation

— Some redundancy needed to cross-check data sets

Typical data sets used in global fits
— Inclusive DIS T +p, £~ + D*
— Vector boson production in p+p, p+D  W*, Z° DY lepton pairs
— Hadronic jets, p+p or p+pbar: inclusive jets, y+et
— neutrino DIS: v + A"

* use of nuclear targets require consideration of nuclear corrections to measure the

proton / neutron PDFs; typically these induce large theoretical uncertainty, the
more so for heavy nuclei. Fixed target DY is an exception: the probed x values in the
nucleus are small enough to neglect corrections.

Need to establish a strategy to get to the particular PDFs one is interested in
— Different groups make different choices



Parameterizations

— One should increase the number of parameters and the flexibility
of the parametrization until the data are well described

— Adding more parameters past that point simply results in
ambiguities, false minima, unconstrained parameters, etc.

— May have to make some arbitrary decisions on parameter values
that are not well constrained by the data

— A smaller numbers of parameters is not always better - it is the
description of the data that counts.



Optimal fit

Needs a numerical measure of how good a fitis
— choose a suitable ¥? function

— vary parameters iteratively until % minimized

Simplest choice

D = exp.data
2 Z (D; —T;)? P

X = 5 G = uncorrelated exp. errors
o; T = calculation

)
— OK for 1 data set
— And if data is statistically limited (errors not “too small”)

But nowadays we have

— Several data sets for many observables

— Correlated and uncorrelated errors

— Overall normalization errors {due to, say, luminosity uncertainties)



Optimal fit

Normalization errors
— assign a ¥? penalty for normalization errors {different choices possible)

— Fitoptimal normalization f,, compare to quoted one

2§ (fnD;i —T))2 [1-fw ] — -
To= 3 { . Hx"ﬁ-.h
"L ll 2 [ .lr_.-.-I I ~ MSTW USE a

|’T|l- -f'.l'-.III

power 4

Point-to-point systematic errors

(D; =% _ Biis; —Ti)2 A

9 e Laj=1Mij"] i) 2
‘\L E 5 1 E h_n'
[ 'r'Tll

— The data points D, are shifted by an amount reflecting the systematic

errors B with the shifts given the the s, parameters

— There is a quadratic penalty term for non-zero values of the shifts s



Optimal fit

Minimization of hiases in treatment of normalizations
— treatall errors on the same footing

the covariance matrix for each experiment is

computed from the knowledze of statistical, systematic and normalization uncertainties
as follows:

. N N,
3 N 3 B S0) -l 0)
(covey )rr = [ IS AR +£?-f"rf_‘_-) FrFy; 4 (E Ll gn + E 'Tf.n"r.f.u) FpUOES (1)
1—1 r—1

=1 T ¥ s

where [ and .J run over the experimental points, Fr and F; are the measured central
. L(0 2 (0] 3 P

values for the observables [ and J. and I';‘ F i ! are the corresponding observables as

determined from some previous fit.

[Ball et al., MNucl.Phys.B838:156,2010]
Want to emphasize a given data set? use
1 - fn]’
2 T * JN
X = g we X 2 wmy k [—U_f_{_‘”'”' ]

— the weights w,_and w,,, can be chosen to emphasize the contribution

of a given experiment or normalization to the total ¥~



PDF uncertainties

Experimental:

— uncertainties in measured data propagate into the fitted PDFs
— can be quantified adapting statistical methods: “PDF error bands”
— These PDF errors need to be interpreted with care

Theoretical:

— Several sources, cannot be quantified easily
* Choice of data sets, kinematic cuts
* Parametrization bias
* Choice of %¢* function
* Truncation of pQCD series, heavy-quark scheme, scale choice
e Higher-twist, target mass effects
* Nuclear corrections



PDF uncertainties

.l Hessian method
¢ PDF parameters denoted by {a,}, g =1,...,d
e As a byproduct of the fitting process, one obtains the Hessian H,,

=
~ 20a, da,

which is evaluated at the minimum of x2

e To estimate the error on some observable X (a), taking into account
only the experimental errors which entered into the calculation of y?

one uses the “Master Formula”

()X 0X
( X T Z _ =2 );u/ =

/ e da,, da,

“tolerance”



PDF uncertainties

Tolerance T =AYy

— Open a textbook, T=Ax=1 means 67% confidence level
— But Hessian method works only if

» all data sets are statistically compatible

® Exp. errors are Gaussian...

¢ _..and have not been underestimated
(e.g., by neglect of a source of systematics)

— Correct this by a larger tolerance factor so that most data (90%,
67% of them) fall inside the PDF error band

e CTEQ6.1 used 7T=10, MRST used 7=5
* Nowadays a bit more refined procedure are adopted



PDF uncertainties

Lagrange multipliers method

— Given an observable X, minimize a new function for fixed values of
Lagrange multiplier A,

(A A) = x5 (4) + A(X(4) — Xo)

— Obtain a new set of parameters, A, and the pair {xz(A), X(\)}

— Repeating for many variables, W-production at the Tevatron

; 0o 1350
one obtains y;(X)
& 1320 f,
— Chose a tolerance, | f
1290 /
read off the PDF error AX 3 N\ /i
o 1260 K o |
- J.f
123 !
" . 4
1200 \.\ /
2 o
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aw {'l'lb]



PDF uncertainties

Monte-Carlo method

— Generate many replicas of the chosen data set
— In each replica, randomize central data point within quoted errors
— Make a fit for each replica

— Obtain PDF errors from statistical analysis of all fit results

— This is adopted by the NNPDF collaboration, but is not limited
to neural network based fits



Examples

MSTW 2008 NLO PDFs (68% C.L.)




Impact of new data, eic

Questions
— What are the requirements in terms of energy, luminosity?
— What physics do we expect to learn?
— “Is it worthwhile building that accelerator?”

For example:

— Is a DIS cross section measurement at the EIC going to improve the
PDF measurements?

This we can anwer with a global fit:
— Generate pseudo-data
— Include them in a global fit
— Compare with old result



