Investigation of Detector Readout Systems

Background

- High Momentum Spectrometer (HMS)
 - Designed to detect charged particles
 - Uses magnets to bend charged particles into the detectors
 - If one knows the mass of a particle, on can know how far it bends and place detectors accordingly
- Neutral Particle Spectrometer (NPS)
 - Designed to detect uncharged particles
 - As opposed to the HMS and the SHMS currently at JLAB
 - Uses a magnet to draw all charged particles away from the detectors
 - Mainly uses a calorimeter to detect particles

Calorimeters

- Calorimeters are used to detect particles in both the NPS and HMS
- Calorimeters use specific materials (in this case PbWO₄ crystals) to detect minute particles
 - Materials need to be / have:
 - Dense and Radiation Hard
 - Low Molière Radius
 - High Light Yield (Transparent to Light)
- The amount of light created through scintillation is small
 - Humans cannot see it, therefore we need light collectors
 - PMTs
 - APDs

HMS Aerogel Cherenkov Detector

- The HMS Aerogel Cherenkov Detector was built ~11 years ago
- The 14 PMTs that were originally in the detector were tested and assumed dead
- I tested the PMTs and found a signal!

BUT

Afterpulses

- The signals that I found had afterpulses
- Afterpulses occur due to Townsend Discharges from the Helium inside of the PMT

Good PMT Signal

FD Pulse

- These afterpulses are evidence of Helium inside of the Vacuum of the PMT (According to a Research Paper by Incandela *et al.*)
- These afterpulses ruin the PMTs as their signals are now amplified by the afterpulse and any coincidence settings can pick up the afterpulse instead of the actual signal

Setup

Signal Comparison Good PMT

Helium PMT

Helium PMT

Removing PMTs

- Because of that, we had to remove PMTs from their cases
- To get rid of the Silicon, they were soaked in Xylene and then we could take out the PMTs

The Process

The Process – Part 2

Quantification of sample PMT GLASS TOP CENTER

R.M.S.:	0.019
Result status:	NoC;
Sum before normalization:	81.3 %
Normalised to:	100.0 %
Sample type:	Loose powder
Correction applied for medium:	No
Correction applied for film:	No
Used Compound list:	OxidesVSL
Results database:	omnhefilm11min
Results database in:	c:\panalytical\superq\userdata

Compound

Name

AI2O3

As203

B2O3

BaO

CaO

CeO2 CuO

Fe2O3 Ga2O3

K20

1 i20

Na2O

NiO P2O5

PbO

Sb2O3 SiO2

SnO2 SrO

ZnO ZrO2

11

12

13

19

Conc.

(%)

4.664

0.213

0.000

0.027

0.000

0.003

9.179

0.000

1.120

0.014

84.571

0.013

0.010

Analyzing the Glass

- We then sent the glass of the PMT to be analyzed for its material components so we could determine its permeability to Helium
- A paper by Altemose provides a formula that relates the permeability constant of glass to molar masses of specific materials within it
- The full results will be available soon, but so far its seems as if the glass is permeable to helium in accordance with the PMT manuals and the research papers

In Context of the NPS

- PMTs would be great in the NPS as they would give a high gain signal with relatively low noise, however, the must be shielded from:
 - Helium
 - Magnetic Fields
- Hence, Avalanche Photo-Diodes (APDs) presented themselves as viable alternatives in the NPS

Avalanche Photo-Diodes (APDs)

- You can think of APDs as reverse LEDs (or solar cells) that amplify incoming light into electrical current
- They use P-N junctions of Silicon
 - The incident photon excites an electron on the positive side through the photoelectric effect which then creates current

Aspect	PMTs	APDs
Main Mechanism	Photoelectric Effect	Photoelectric Effect
Size of the Detector	Large	Small
Size of the Sensor	Large	Small
Average Operating Voltage	1800 V	400 V
Signal Type	Analog	Analog
Magnetic Sensitivity	Extremely Sensitive	Not Sensitive
Vacuum Dependence	Must be a Vacuum	No Dependence
Temperature Dependence	No Dependence	Higher Temperatures cause noise
Radiation Dependence	No Dependence	Radiation Sensitive
Signal Strength	Strong	Not As Strong
Signal to Noise Ratio	Low	High

APD Temperature Dependency Examples

PMT Output v APD Output

17

Comparison

- Each of the detectors has its advantages and disadvantages
- The NPS needs a detector for the calorimeter to amplify the light given off by the incoming particles
 - PMTs give a clearer signal but require magnetic shielding
 - APDs give a noisier signal but are more compact and do not require shielding
- Future comparison studies will determine whether or not money should be spent on shielding for the PMTs or APDs

Data Acquisition Systems

- As many of you might have seen in Blessed's presentation, we have designed a crystal drawing system to grow our own crystals for the NPS
- Growing our own crystals provides certainty to the materials that are included within the crystals
- During my time here I worked on developing a data acquisition software to monitor the crystal weight using a load cell

Purpose of the Readout Software

- To measure the crystal's growth in the oven, we need a load cell as we cannot peek into a 1200°C oven
- The USB sends a constant current into the load cell and measures the returning current
 - This returning current is given as a calculated reading

Starting Point

- It originally came with many bugs
- Once these bugs were fixed, the software looked like this:

Microsoft Visual C+	+ Example Using FUTEK USB DLL	2.3.4006.6							. ,
Serial Number	Calculated Reading 000.000	Units Units	Start	Stop	Tare	Gross			
ISBEvample									

The Final Product

- I altered the software to provide a readout in Newtons as it did not originally do so
 - To do so I used a fit that Blessed calculated to convert the calculated reading to Force in Newtons
- I also added Mass and Density as some of the readouts for the software to make it easy to understand the readout of the load cell
- I also enabled it to output a log file
- The final software looks like this:

📲 Microsoft Visual C++ Example Using FUTEK USB DLL 2.3.4006.6 – 🗆 🗙					
Serial Number	Calculate	d Reading	Units		
717504	000	.000	Units		
Calcul	ated Force	Units	3		
0	00.000	Units			
Calcu	ated Mass	Units M	ass		
0	00.000	Units	s		
Run Time	Calculate	d Density	Units Density		
Run Time Enter Here (in minutes	Calculate	d Density	Units Density Units		

Outlook

- Over the next couple of weeks, I will be working on the following:
 - Continue removing PMTs and installing new ones
 - Studying the temperature dependency of the APD
 - Getting the Load Cell Software to work on any Windows computer

Acknowledgements

- Dr. Horn
- Dr. Pegg
- Dr. Penafiel
- Dr. Muller
- Leigh Anne Stephens
- Dr. Perez-Cardenas
- Richard

- Dannie
- Casey
- Salina
- Andres
- Everyone Here!