

Figure 3: tmoy spectra with DIS and DVCS cuts overlayed for 10, 15, 20 μA .

 $Real\ Coincidences = Integral\ over\ main\ coincidence\ peak\ or\ Total-Integral\ over\ accidental\ 4ns\ peak\ (4)$

 $Integral\ over\ main\ coincidence\ peak\ or\ Total = Signal + Background \qquad (5)$

$$\textit{Signal/Total} = \frac{\textit{Real Coincidences}}{\textit{Integral over main coincidence peak}}$$

Current (μA)	S2m&&Cer LT	Rate: no cuts	DIS Normalized	DVCS Normalized	DIS	DVCS Normalized
			Rate	Rate	$rac{signal}{total}$	Rate corrected
10.61	0.985	9.27	3.422	5.212	0.7889	4.111
15.32	0.976	10.26	3.450	5.615	0.7470	4.194
20.53	0.965	11.26	3.449	5.936	0.6507	3.863

Table 2: Table summarizing the different rates and results from our studies so far. DIS rates had tracking (ntr) & TDC & Cer & trigPatW&0x00080 cuts applied, DVCS rates had tracking (ntr) & TDC & Cer & trigPatW&0x00100 cuts applied. Rates were normalized with the S2m && Cer livetime and have units $(\frac{Hz}{\mu A})$. The DIS signal/total ratios result from taking into account the DIS accidental rates and then applied to get the DVCS corrected rates.

DIS signal to total ratio for each
$$\mu A = \frac{Real\ Coincidences}{Integral\ over\ main\ coincidence\ peak}$$
 (7)

$$DVCS \ normalized \ rate \ corrected = \frac{DVCS \ rate \ (Hz) \times DIS \ signal \ to \ total \ ratio}{I \ (\mu A) \times S2M&&Cer \ LT} \tag{8}$$

DVCS corrected normalized rate at 10
$$\mu A = \frac{54.47 \frac{Hz}{\mu A} \times 0.7889}{10.61 \mu A \times 0.985} = 4.111 \frac{Hz}{\mu A}$$
 (9)