

Assembly

Rachel Bartek

Geometry

- We would like to build a spherical detector but the mechanics are tricky
- Disks become more cost effective than barrels

The CMS Phase I Pixel Upgrade

DELLS (IEA

3

Pixel Unite Cell

- Another dimension of information means more complex interconnect, more challenging electronics, and many more channels
- Hybrid pixel interconnect using indium bump bonds
- Interconnect is a common point of failure

Row No.

40

Column No

50

particl

Sensor 250 Hr

Anatomy of a module TBM HDI Wirebond Sensor HV pad HD End Flex holder ROC Bump-bonds TBM cable UL 1 1 C2 UIB Upgrade 1045 J31 J20 Pix_HDI_RevC USCN 04/2014 C29 30598 YGX14 3014 S/N: hannannannannannan J27 18:28 85 1.3 Connector M-?-2-33 DEUS MEA LUX EST 2x8 ROC

5

Bare Module

16 ROCs bump bonded to one sensor

7

HDI Testing

- HDIs tested before shipped to assembly sites
 - Test pads for high voltage, low voltage, clock, calibration, trigger, reset, and serial data on 35 signal and HDI read through bed of nails card on testwer bonding endholder

pads

Reception of bare modules

- Remove packaging material unsuitable for cleanroom
- Open ESD safe package
 in cleanroom
- Perform visual inspection
 - Check for visible defects from shipping on both sides
- Take IV curve

Place in dry air cabinet in

drawer labeled "visually

October 26, 2016 R. Bartek

Gluing HDI to bare module

- Robotic gantry using custom tools (next slide)
- LabVIEW program includes the following steps:
 - Get fiducials of bare module and HD
 - Apply glue to bare module using sta
 - Pick and place HDI on bare module

Unglued - Slot Stat

- Place curing weight on HDI

Apply Stamp?

- Glue cures for 10h

October 26, 2016 R. Bartek

- Remove weights by ha

Module Chucks

- Stencils of 100 µm thickness give a good reference position for the bare module
- · Work flow designed with chucks in mind

Pixel module production at UNL: Material flow

Alignment

- Use fiducials to get precision measurement of location of parts
- Rotation in wrong direction went unnoticed due to excellent alignment of chucks
- Glue needs to support HDI wire bonding

Wirebonding

- Aluminum ultrasonic welding
 - Aluminum 45° wedge bonding achieves finest pitch
- This is a bit of an art
 - Getting good bonds depends on machine,

Pull tester

- Pull tester head part of wire bonder
 - Take about a minute to change from bonder to pull tester
- Perform acceptance test for every batch of HDI
- Hook measures force where bond breaks

Preferred Failure Modes

- Mid-Span Break (Bond Strength exceeds Wire Tensile Strength)
 - 2nd Bond Break
 - Heel Break

Undesirable Failure Modes

- Low-Strength Heel Breaks
- Lifted Bond

Encapsulation

- Why encapsulate?
 - CDF wirebond resonance
 - Humidity control (Dendrites)

- Labview program includes the following steps:
 - Get fiducials of bare module and HDI
 - Calibrate needle
 - Start the flow of Sylgard to needle tip
 - Deposit Sylgard on all bond feet
 - Speed of gantry slows as time from mixing increases
- Module transferred to carrier and placed in curing

V_{bias} vs I curves

- A high quality detector will have a low leakage current
 - Strongly temperature dependent
 - Require breakdown to be > 150V
- Current can be affected by surface defects, impurities and physical damage

Basic functionality tested

Optimal working

pretestVthrCompCalDel_c12_r22_C7 (V0)

Pixel Alive

Full Electronic Qualification

Mounting on disks

• At FNAL

How to silicon

If you don't know what is wrong with this picture, please keep your hands in your pockets at ALL times while in the lab

OCD TEST

Summary

- Silicon is not for the faint at heart
- Silicon enabled us to do physics at higher luminosities
- CMS Phase I Upgrade of the pixel detector is on target for installation during EYETS

