EIC fast Monte Carlo Overview August 26th, 2019 Richard Trotta

EIC fast Monte Carlo

• C++ based fast MC which outputs root files and text file for GEMC input

Cpp Script(TDISMC_EIC.cpp)-requires as input: range of Q2 and x and uses a header file for beam energy, beam polarization, structure function parameterization, physical constants, etc. Calls 4 quantities...

- 1. CTEQ6 PDF table
- 2. $f2\pi$ with various parameterization (the header file defines the structure function)
- 3. F2N, nucleon structure function (the header file defines the structure function)
- 4. Beam smearing function

Event generation

Random number generation uses TRandom3 (run3.SetSeed(#))

- Defining electron and proton/deuterium beam...
 - kbeamMC=kbeam*ran3.Gaus(1,eD/k), where eD/k=7.1e-4 is the fractional energy spread normalized emittance value
 - kbeamMCx=kbeamMC*ran3.Gaus(0, Θ ex), where Θ ex is smearing
 - PbeamMC=Pbeam*ran3.Gaus(0, iDp/p), where iDp/p=3e-4
 - PbeamMCx=PbeamMC*ran3.Gaus(0, Θ ix)

Breaking Down Important Scripts

Currently have different scripts for different physics processes

- TDISMC_EIC.cpp : pion structure function with ep scattering
- TDISMC_EICn.cpp : pion structure function with eD scattering
- TDISMC_EICK.cpp: kaon structure function with ep scattering

All gather physics from here

- cteq/ : cteqpdf.h and data based call files (c++ wrapper)
- cteq-tbls/ : nucleon PDFs table
- tim_hobbs/ : various regularization form for pion FF

Edit kinematics (x range, Q2 range, number of events, pbeam, kbeam)

• inputs/ : kinematics.input

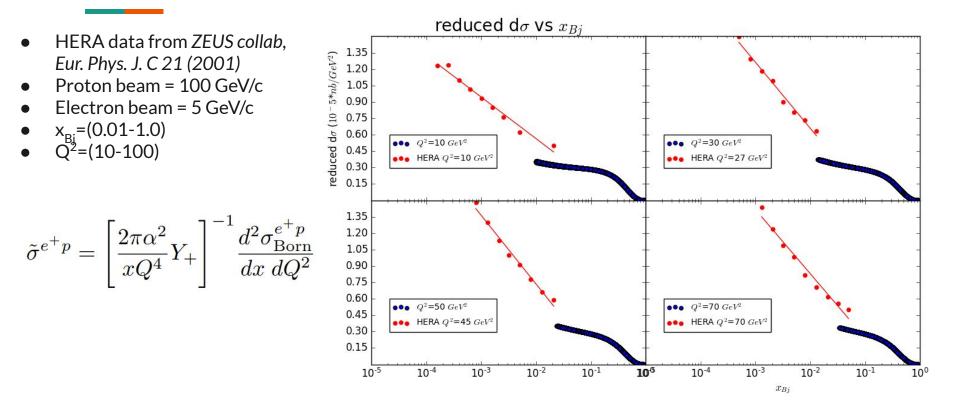
Collider vs. fixed target

Careful with kinematic definitions

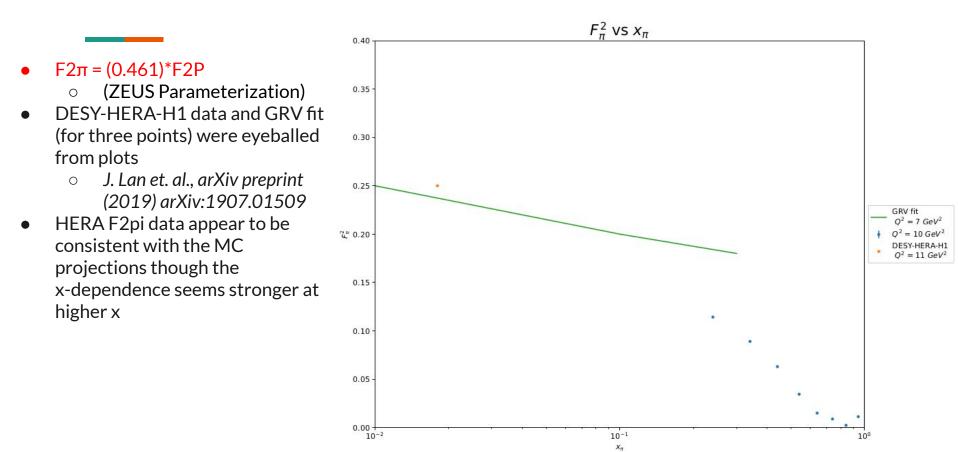
- Original code was written for fixed target found and fixed several instances with restrictions that apply to fixed target, but not to collider
- Examples:
 - Measurable proton range (for fixed target given by TPC imposes limits on k, z)
 - Removed fixed target restrictions on x for structure function calculations

Kinematic Variables

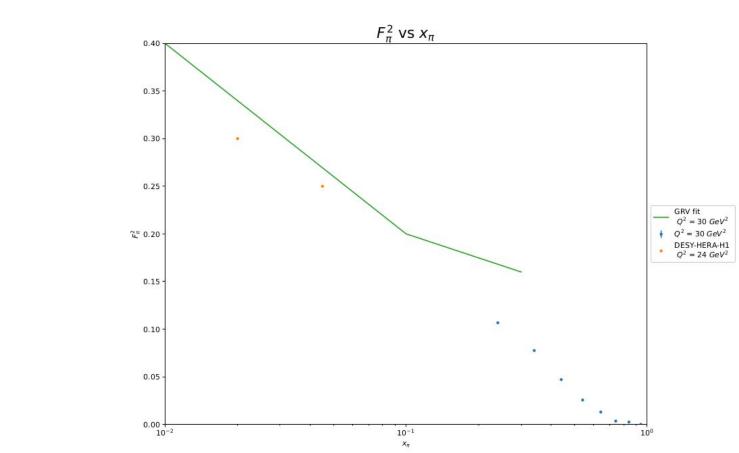
$$Q^{2} = Q_{max}^{2}uu + Q_{min}^{2}(1 - uu) \qquad x_{Bj} = (x_{min})^{1 - uu} (x_{max})^{uu}$$

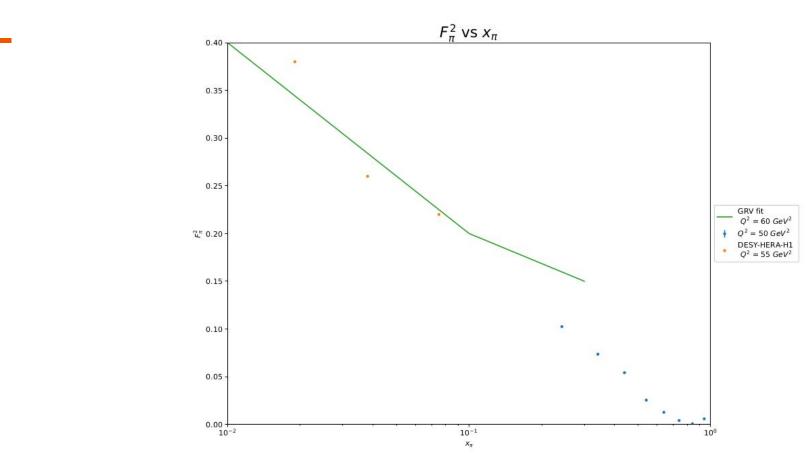

$$uu = ran3.Uniform() \qquad x_{\pi} = \frac{x_{TDIS}}{1 - (p2)_{z}}$$

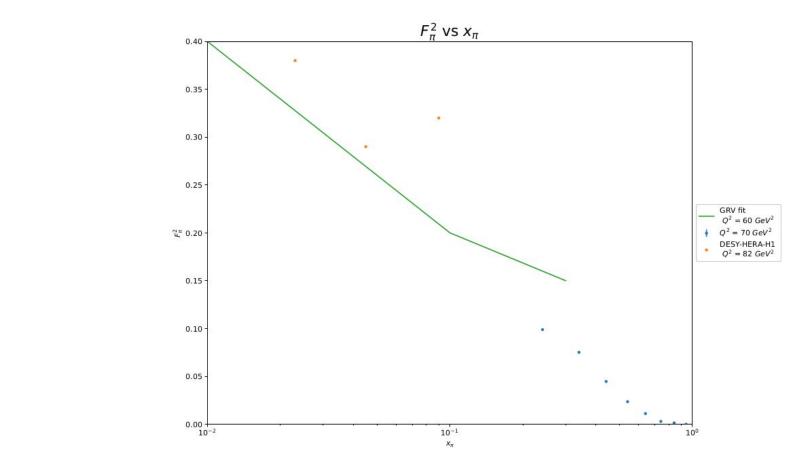
$$(p2)_{z} = gRandom -> Uniform(1)$$


$$y_{\pi} = \frac{(pScatPion)_{rest}(qVirt)_{rest}}{(pScatPion)_{rest}(kIncident)_{rest}} \qquad x_{D} = x_{Bj}(\frac{M_{proton}}{M_{ion}})$$

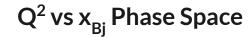
$$t_{\pi} = E_{\pi}^{2} - |pScatPion.v3|^{2} \qquad y_{D} = \frac{Q^{2}}{x_{D}(2p \cdot k)}$$

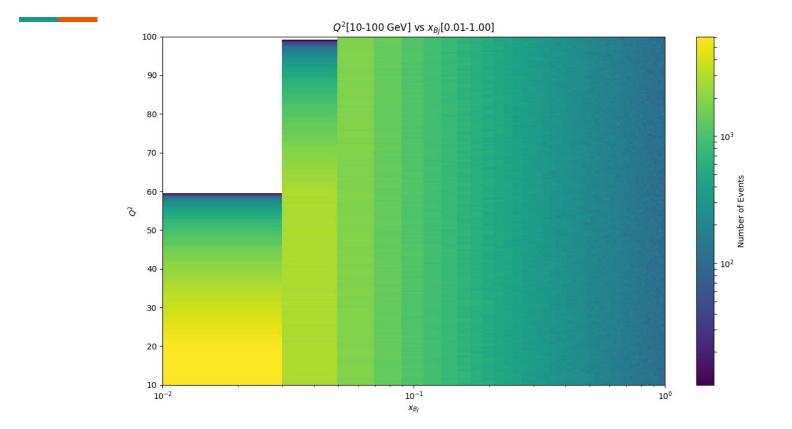

Validation: Reduced cross section compared with HERA


Validation: $F2\pi$ with GRV fit/DESY-HERA-H1 data [Q²= 10(7/11) GeV]


F2 π with GRV fit/DESY-HERA-H1 data [Q²= 30(30/24) GeV]

F2 π with GRV fit/DESY-HERA-H1 data [Q²= 50(60/55) GeV]


F2 π with GRV fit/DESY-HERA-H1 data [Q²= 70(60/82) GeV]



Projected F2 π uncertainties – Rik's analytical estimates vs. MC

- The calculated values for $f2\pi$, xpi, and the stat uncertainty are very similar especially at low x.
- The high x comparison falls off as my calculated stat uncertainties stay below 1%

Richard	Q2=10 GeV2	no cuts							
F2pi	nan	0.114	0.089	0.063	0.034	0.015	0.009	0.002	0.011
xpi	nan	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
stat uncern %	nan	0.45%	0.51%	0.54%	0.64%	0.69%	0.67%	0.71%	0.82%
Rik	Q2=9 GeV2	no cuts							
F2pi	0.152	0.140	0.110	0.088	0.060	0.039	0.020	0.008	nan
xpi	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	nan
stat uncern %	0.42%	0.45%	0.50%	0.55%	0.28%	0.80%	1.90%	3.00%	nan

