ElC meson structure April 13th, 2020

Richard Trotta

Unphysical kinematics in MC output for many events

Q^2 cuts

t cuts

- These high momentum events are all at low angles (i.e. very forward)
- So I did a tcut (0,0.05) to see if I could isolate the events

25

Θ

Θ

t definition

- I decided to check how t was defined to try and track down the source
- I investigated P_{spec,vertex} further as P_{inc,ver} and the masses were fine

$$tPrime = 2(P_{spec,vert} \cdot P_{inc,vert}) - M_{ion}^2$$
$$tSpec = M_{ion}^2 + M_{spec}^2 - 2(P_{spec,vert} \cdot P_{inc,vert})$$

Defining the scattered proton

 From investigating P_{spec,vertex} I found the source of the issue and it was with how the scattered proton is defined

 $P_{scat,rest} = [(P_{p2}sin(\theta_{p2})cos(\phi_{p2}))\hat{x}, (P_{p2}sin(\theta_{p2})sin(\phi_{p2}))\hat{y}, (P_{p2}cos(\theta_{p2}))\hat{z}]$

$$P_{p2} = \sqrt{(Pz_p2)^2 + (p2_pt)} \quad \phi_{p2} = ran(360 * D2R) \quad \theta_{p2} = \arccos(\frac{Pz_{p2}}{P_{p2}}) \quad p2_{pt} = 0.005 * PBeam$$

$$Pz_{p2} = \frac{-TDIS_{znq}(q_{virt,rest}\hat{z}) + \sqrt{(TDIS_{znq}q_{virt,rest}\hat{z})^2 + Q^2(E_{virt,rest})^2(M_p^2 + p2_{pz}) - Q^2(TDIS_{znq})^2}{Q^2}$$

$$TDIS_{nzq} = p2_{pt}(P_{spec,rest,new} \cdot q_{virt,rest})$$

Redefining the scattered proton

- I couldn't find a reference to any of these variables so I played around with them
- I set this as a constant and placed an energy conservation cut (Ecut < PBeam)
- After playing around I redefined the P_{scat,rest} in terms of its transverse and longitudinal components

$$P_{scat,rest} = [(P_{p2}sin(\theta_{p2})cos(\phi_{p2}))\hat{x}, (P_{p2}sin(\theta_{p2})sin(\phi_{p2}))\hat{y}, (P_{p2}cos(\theta_{p2}))\hat{z}]$$

$$\hat{Y}_{scat,rest} = [(Px_{p2}sin(\theta_{p2}))\hat{x}, (Py_{p2}sin(\theta_{p2}))\hat{y}, (Pz_{p2}cos(\theta_{p2}))\hat{z}]$$

$$Px_{p2} = p2_{pt}cos(\phi_{p2})$$
 $Py_{p2} = p2_{pt}sin(\phi_{p2})$

Redefining the scattered proton

- This new definition (with the Ecut) has given us final state momenta that make sense for the neutron and pion!
- Although the distributions are incorrect, which is just a result of this band aid fix

Action Items			
Method for distiguishing decay products	ON-GOING		
Analyzer plugin for physics variables (e.g. smearing)	TODO		
mesonMC for sigma final states	TODO		
Include additional pion SF models	TODO		
Impliment virtual detectors	ON-GOING		
Determine detection fractions	ON-GOING	->	Proton, DONE
Temple Meeting	DONE		Lambda, TODO

Timeline to come

EPJA Publication	First Meson structure WG meeting	Meson structure WG meeting	Meson structure WG meeting	Next Meson structure WG meeting	Meson Structure WG meeting	Second workshop at U of Pavia	Workshop on meson structure at EIC at CFNS/ SBU	Status reports at EICUGM	Third workshop at CUA	Week with pion and kaon structure focus	Fourth workshop at UCB/ LBL
July 19th, 2019	Jan. 27th, 2020	Feb. 25th, 2020	March 16th, 2020	March 30th, 2020	April 13th, 2020	May 22-24, 2020	June 1-5, 2020	August 3-7, 2020	Sep. 17-19, 2020	Oct. 5-9, 2020	Nov. 19-21, 2020