Uncertainty Propagation

All measurements have uncertainty

 Provides a way to accurately combine two measurements and their uncertainties

+ 7/13/12 n= 1 sin(x)+ + cos(y-x)2. MA Test 11 Box 1 top A: 54.3 54.81 = 54.555 ± , 255) D: 34 3, 35 3 = 887, 4125 ± 2,38125 x: 42.8092 ± .0318 ~日=日(音)~+(日)~= 4 = . 061476 2 .000331 $v_{g} = \sum_{n=1}^{\infty} \frac{(a_{1}^{2} + v_{g}^{2}) - fan(a_{1}^{2}) - 0.018893}{(a_{1}^{2} - v_{g}^{2}) - fan'(a_{1}^{2}) - 0.018893}$ $v_{g} = \frac{1}{2} \frac{1}{2} \frac{(a_{1}^{2} - v_{g}^{2}) - fan'(a_{1}^{2}) - 0.018893}{(a_{1}^{2} - v_{g}^{2}) - 0.018894}$ $v_{g} = \frac{1}{2} \frac{1$ Vsin(a) = 2 (sina) (.000407) = .000553 vcos(y-a) = 2 (costy -a)) (.000407) = .000553 vcos(y-a) = 2 (costy -a)) (.000409) = .000633 sin(a) = .461801 ± .000553 cos(x-x)= . 598977 ± .000633 $V(\sin + \cos) = \overline{V(\sin)^2 + (\cos)^2} = .000841$ $Un = \frac{1}{2} (\sin 60^2 + \cos (3 - \infty)^2)^{\frac{1}{2}} (.000841) (1.000343) = .00040.$ n=1.0302433 .000408

The calculations for one test done by hand

An Uncertainty Calculator

Calculator program written by Thomas Huber at the Gustavus Adolphus College.

This quickly reduced ten minute calculations down to twenty second ones

Calculator Consistency

Comparison between Hand and Calc

Tile comparison

There is a difference between the individual tiles despite them having the same manufacturer labeled index

1.03 Tile Comparison

Tile comparison

1.02 Tile comparison

