

π -Mesons and Added Meson Resonances

Comparing Graphs of Pion Form Factor Data

1.5 2 2.5 3 3.5

Non-Linear Modeling with Added Resonances

ω(233 MASS (MeV)	WIDTH (Me	$C) = 0^{-}(1 + \frac{1}{DC})$) CUMENT ID		TECN	COMMENT			
$2330\!\pm\!30$	435 ± 75	AT	KINSON	88	OMEG	$2550 \ \gamma p \rightarrow \ \rho^{\pm} \rho^{0} \pi^{\mp}$			
ρ(2270)	I ^G (J ^{PC})	= 1+(1)						
MASS (MeV)	WIDTH (MeV)	DOCUMEN	NT ID	TECN	COMM	ENT			
2265±40	325 ± 80	⁴⁹ ANISOV	ICH 02	SPEC	0.6-1. $\omega \eta$	$\begin{array}{cccc} 9 & p \overline{p} ightarrow \omega \pi^0, \ \pi^0, & \pi^+ \pi^- \end{array}$			
$2280\!\pm\!50$	440 ± 110	ATKINS	ON 85	OMEC	, 20–70	$\gamma p \rightarrow p \omega \pi^+ \pi^- \pi^0$			
⁴⁹ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.									

f ₆ (3100)	$I^{G}(J^{PC}) = 0^{+}(6^{++})$							
MASS (MeV)	WIDTH (MeV)	DOCUMENT ID		TECN	COMMENT			
$3100\!\pm\!100$	700 ± 130	BINON	05	GAMS	$33 \pi^- p \rightarrow \eta \eta n$			

Possible Inverse Relation in High-Energy Data

Attempt to Solve for η -Coefficient

$$F_{K^{0}} = -\frac{1}{2} \left(c_{\rho}^{K} B W_{\rho} + c_{\rho'}^{K} B W_{\rho'} + c_{\rho''}^{K} B W_{\rho''} \right) + \frac{1}{6} \left(c_{\omega}^{K} B W_{\omega} + c_{\omega'}^{K} B W_{\omega'} + c_{\omega''}^{K} B W_{\omega''} \right) + \frac{1}{6} \left(\eta_{\varphi} c_{\varphi}^{K} B W_{\varphi} + c_{\varphi'}^{K} B W_{\varphi'} \right)$$

$$\eta_{\varphi}(s) = 1 + \left(\eta_{\varphi} - 1\right)\theta\left(\sqrt{s} - \left(m_{\varphi} - \Gamma_{\varphi}\right)\right)\theta\left(m_{\varphi} + \Gamma_{\varphi} - \sqrt{s}\right)$$

$$\begin{array}{ccc} \eta(2190) & I^{G}(J^{PC}) = 0^{+}(0^{-+}) \\ \underline{MASS\ (MeV)} & \underline{WIDTH\ (MeV)} & \underline{DOCUMENT\ ID} & \underline{TECN} \\ 2190 \pm 50 & 850 \pm 100 & BUGG & 99 & BES \end{array}$$

Upcoming Tasks

- Extend graph to investigate space-like data points.
- Run non-linear modeling for kaon data.
- Evaluate slope at $\sqrt{s} = 0$ and compare with literature.
- Investigate η -coefficient in greater detail.

Olive, K.A. et al. 2014. "The Review of Particle Physics," in *Chin. Phys.* C 38, 090001. (2015) http://pdg.lbl.gov/2015/listings/

Bruch, C. et al. 2005. "Modeling the pion and kaon form factors in the timelike region," in *European Physics Journal C* 39, 41-54. (2004)

Anisovich, V.V., Kobrinsky, M.N., Nyiri, J. and Shabelshi, Yu. M. 2004. *Quark Model and High-Energy Collisions*. World Scientific Publishing Co. Pte. Ltd., River Edge, NJ. (6-17)

Mecholsky, Nicholas. 2016. "Kaon Form Factor and Transverse Charge Density." Mathematica Notebook. (June 17th)

Mecholski, Nicholas. 2016. "Pion Form Factor." Mathematica Notebook.

The End