Characterization of Lead Tungstate Crystals for Application in the Neutral Particle Spectrometer and Electron Ion Collider

Abby and Dannie

Why is PWO important?

- Lead Tungstate Crystals (PWO) are ideal for use in a compact electromagnetic calorimeter
 - Small Moliére Radius
 - Short Radiation Length = high stopping power
 - Higher light yield than other heavy crystals
 - Radiation hard
- HOWEVER, recent measurements have shown considerable variation of crystal properties
- Necessary to measure and understand the origin of variation

Ideal Parameters

Parameter	Unit	EIC	NPS
Light Yield	pe/MeV	15	10-15
Transmittance @420nm	%	>60%	>60%
dk	m^-1	<1.5	

Characteristic 1: Longitudinal Transmittance

• Lambda 950 Photospectrometer

Characteristic 1: Longitudinal Transmittance

• Uncertainties from crystal preparation and placement were reduced

Characteristic 1: Longitudinal Transmittance

• Comparison against manufacturer's data

Characteristic 2: Transverse Transmittance

Characteristic 3: Radiation Hardness

6970 R/min

dk = absorption coefficient, 420nm

- Closer to 0 = better radiation hardness

LED Curing

LED Curing

Effect of Blue LED Curing Time on dk: J16

Characteristic 4: Light Yield

Light Yield: The amount of photoelectrons produced per 0.511 MeV (per electron)

Light Yield Setup

The Equation

((365-27.6)/(87-27.6))= 6 electrons per photon

(6 electrons)/(.511MeV)=11.3pe/MeV

Variation in Light Yield due to Slow Components

Fast Component: Electrons return to ground state rapidly after being excited, releasing energy via a photon

Slow Component: Electrons are "metastable" in high energy levels, take longer to return to their ground state/release photons

Ideally, light yield of slow components will not cause overall light yield to fluctuate.

To test, we measured light yield as a function of gate width.

All J36 Gatewidth Fits

J36

Ideally, ratio should be close to 1 regardless of gate width, so slope of the line should be close

to $0 \rightarrow \checkmark$

100ns= Standard Gate Width

Conclusion

- From what we have seen so far, all crystals (J16-J45) are suitable for use in the NPS/EIC.
- No measurements violated the ideal parameters
- More measurements are needed