Difference between revisions of "MainPage:Nuclear:KaonDetector:PMTCharacteristics"
Jump to navigation
Jump to search
Line 22: | Line 22: | ||
! style="background: #009; color: #fff;" | Base s/n | ! style="background: #009; color: #fff;" | Base s/n | ||
! style="background: #009; color: #fff;" | High voltage (kV) | ! style="background: #009; color: #fff;" | High voltage (kV) | ||
+ | ! style="background: #009; color: #fff;" | PMT Gain | ||
|- style="background:white; color:black" | |- style="background:white; color:black" | ||
| 9592 || 76 || 1600 || (2286 +/- 48) x 10^4 | | 9592 || 76 || 1600 || (2286 +/- 48) x 10^4 |
Revision as of 14:49, 1 December 2011
This page is under construction. It requires a review! |
⇐ Back to the Kaon Detector page |
Objectives of PMT Characterization
The group is performing different experiments with some PMT to construct a tool to analyse the equipment that will be used in the aerogel detector.
Previous analysis of PMT's gain
The University of South Carolina had analyzed the PMT before it comes to JLab. It was done in the summer of 2011. Here is a table with the main characteristics of each PMT, separated by its serial number.
This table can also be download as a spreadsheet: [File:PMTcatalog.xls].
PMT s/n | Base s/n | High voltage (kV) | PMT Gain |
---|---|---|---|
9592 | 76 | 1600 | (2286 +/- 48) x 10^4 |
9592 | 76 | 1700 | (3711 +/- 78) x 10^4 |
9592 | 76 | 1800 | (5983 +/- 128) x 10^4 |
9592 | 76 | 1900 | (9448 +/- 195) x 10^4 |
9592 | 76 | 2000 | (14209 +/- 294) x 10^4 |
9592 | 76 | 2100 | (20771 +/- 433) x 10^4 |
9592 | 76 | 2200 | (29682 +/- 613) x 10^4 |
9592 | 76 | 2300 | (42611 +/- 896) x 10^4 |
9592 | 76 | 2400 | (59840 +/- 1262) x 10^4 |
1502 | 30 | 1600 | (1331 +/- 28) x 10^4 |
1502 | 30 | 1700 | (2062 +/- 43) x 10^4 |
1502 | 30 | 1800 | (3180 +/- 66) x 10^4 |
1502 | 30 | 1900 | (4397 +/- 93) x 10^4 |
1502 | 30 | 2000 | (6329 +/- 141) x 10^4 |
1502 | 30 | 2100 | (9010 +/- 186) x 10^4 |
1502 | 30 | 2200 | (11759 +/- 259) x 10^4 |
1502 | 30 | 2300 | (15860 +/- 346) x 10^4 |
1502 | 30 | 2400 | (19392 +/- 407) x 10^4 |
9654 | 82 | 1600 | (701 +/- 43) x 10^4 |
9654 | 82 | 1700 | (1061 +/- 24) x 10^4 |
9654 | 82 | 1800 | (1628 +/- 35) x 10^4 |
9654 | 82 | 1900 | (2343 +/- 53) x 10^4 |
9654 | 82 | 2000 | (3365 +/- 73) x 10^4 |
9654 | 82 | 2100 | (4349 +/- 107) x 10^4 |
9654 | 82 | 2200 | (5838 +/- 140) x 10^4 |
9654 | 82 | 2300 | (7998 +/- 193) x 10^4 |
9654 | 82 | 2400 | (10315 +/- 233) x 10^4 |
9657 | 9 | 1600 | (596 +/- 16) x 10^4 |
9657 | 9 | 1700 | (1010 +/- 20) x 10^4 |
9657 | 9 | 1800 | (1546 +/- 32) x 10^4 |
9657 | 9 | 1900 | (2330 +/- 48) x 10^4 |
9657 | 9 | 2000 | (3390 +/- 70) x 10^4 |
9657 | 9 | 2100 | (4812 +/- 101) x 10^4 |
9657 | 9 | 2200 | (6739 +/- 143) x 10^4 |
9657 | 9 | 2300 | (9192 +/- 190) x 10^4 |
9657 | 9 | 2400 | (12548 +/- 263) x 10^4 |
1411 | 64 | 1600 | (928 +/- 21) x 10^4 |
1411 | 64 | 1700 | (1444 +/- 31) x 10^4 |
1411 | 64 | 1800 | (2145 +/- 46) x 10^4 |
1411 | 64 | 1900 | (3135 +/- 68) x 10^4 |
1411 | 64 | 2000 | (4403 +/- 93) x 10^4 |
1411 | 64 | 2100 | (6040 +/- 136) x 10^4 |
1411 | 64 | 2200 | (8305 +/- 177) x 10^4 |
1411 | 64 | 2300 | (11111 +/- 231) x 10^4 |
1411 | 64 | 2400 | (14029 +/- 320) x 10^4 |
1488 | 708010 | 1600 | (1044 +/- 22) x 10^4 |
1488 | 708010 | 1700 | (1626 +/- 34) x 10^4 |
1488 | 708010 | 1800 | (2513 +/- 53) x 10^4 |
1488 | 708010 | 1900 | (3640 +/- 75) x 10^4 |
1488 | 708010 | 2000 | (5150 +/- 108) x 10^4 |
1488 | 708010 | 2100 | (7325 +/- 159) x 10^4 |
1488 | 708010 | 2200 | (9871 +/- 207) x 10^4 |
1488 | 708010 | 2300 | (13436 +/- 296) x 10^4 |
1488 | 708010 | 2400 | (18029 +/- 366) x 10^4 |
1483 | 81 | 1600 | (945 +/- 24) x 10^4 |
1483 | 81 | 1700 | (1801 +/- 38) x 10^4 |
1483 | 81 | 1800 | (2644 +/- 55) x 10^4 |
1483 | 81 | 1900 | (3269 +/- 68) x 10^4 |
1483 | 81 | 2000 | (4219 +/- 90) x 10^4 |
1483 | 81 | 2100 | (7512 +/- 157) x 10^4 |
1483 | 81 | 2200 | (10017 +/- 215) x 10^4 |
1483 | 81 | 2300 | (13468 +/- 285) x 10^4 |
1483 | 81 | 2400 | (17778 +/- 388) x 10^4 |
9578 | 77 | 1600 | (558 +/- 36) x 10^4 |
9578 | 77 | 1700 | (927 +/- 20) x 10^4 |
9578 | 77 | 1800 | (1399 +/- 30) x 10^4 |
9578 | 77 | 1900 | (2088 +/- 49) x 10^4 |
9578 | 77 | 2000 | (2906 +/- 62) x 10^4 |
9578 | 77 | 2100 | (4014 +/- 86) x 10^4 |
9578 | 77 | 2200 | (5543 +/- 127) x 10^4 |
9578 | 77 | 2300 | (7699 +/- 166) x 10^4 |
9578 | 77 | 2400 | (9998 +/- 227) x 10^4 |
9562 | 902009 | 1600 | (2006 +/- 43) x 10^4 |
9562 | 902009 | 1700 | (3155 +/- 70) x 10^4 |
9562 | 902009 | 1800 | (4994 +/- 110) x 10^4 |
9562 | 902009 | 1900 | (6916 +/- 158) x 10^4 |
9562 | 902009 | 2000 | (10349 +/- 234) x 10^4 |
9562 | 902009 | 2100 | (14032 +/- 395) x 10^4 |
9562 | 902009 | 2200 | (21375 +/- 472) x 10^4 |
9562 | 902009 | 2300 | (29750 +/- 701) x 10^4 |
9562 | 902009 | 2400 | (38350 +/- 938) x 10^4 |
9598 | 63 | 1600 | (981 +/- 22) x 10^4 |
9598 | 63 | 1700 | (1563 +/- 33) x 10^4 |
9598 | 63 | 1800 | (2439 +/- 50) x 10^4 |
9598 | 63 | 1900 | (3688 +/- 78) x 10^4 |
9598 | 63 | 2000 | (5468 +/- 114) x 10^4 |
9598 | 63 | 2100 | (7836 +/- 168) x 10^4 |
9598 | 63 | 2200 | (10969 +/- 228) x 10^4 |
9598 | 63 | 2300 | (15127 +/- 321) x 10^4 |
9598 | 63 | 2400 | (20347 +/- 435) x 10^4 |
1385 | 902024 | 1600 | (730 +/- 17) x 10^4 |
1385 | 902024 | 1700 | (1141 +/- 24) x 10^4 |
1385 | 902024 | 1800 | (1730 +/- 37) x 10^4 |
1385 | 902024 | 1900 | (2531 +/- 53) x 10^4 |
1385 | 902024 | 2000 | (3620 +/- 76) x 10^4 |
1385 | 902024 | 2100 | (4954 +/- 104) x 10^4 |
1385 | 902024 | 2200 | (6699 +/- 138) x 10^4 |
1385 | 902024 | 2300 | (8942 +/- 189) x 10^4 |
1385 | 902024 | 2400 | (11479 +/- 248) x 10^4 |
9652 | 62 | 1600 | (970 +/- 23) x 10^4 |
9652 | 62 | 1700 | (1489 +/- 35) x 10^4 |
9652 | 62 | 1800 | (2295 +/- 54) x 10^4 |
9652 | 62 | 1900 | (3459 +/- 75) x 10^4 |
9652 | 62 | 2000 | (4854 +/- 115) x 10^4 |
9652 | 62 | 2100 | (6482 +/- 169) x 10^4 |
9652 | 62 | 2200 | (8296 +/- 216) x 10^4 |
9652 | 62 | 2300 | (11544 +/- 278) x 10^4 |
9652 | 62 | 2400 | (14580 +/- 354) x 10^4 |
9577 | 41 | 1600 | (1955 +/- 42) x 10^4 |
9577 | 41 | 1700 | (3154 +/- 70) x 10^4 |
9577 | 41 | 1800 | (4797 +/- 107) x 10^4 |
9577 | 41 | 1900 | (7223 +/- 157) x 10^4 |
9577 | 41 | 2000 | (10398 +/- 250) x 10^4 |
9577 | 41 | 2100 | (15107 +/- 333) x 10^4 |
9577 | 41 | 2200 | (20870 +/- 445) x 10^4 |
9577 | 41 | 2300 | (28766 +/- 609) x 10^4 |
9577 | 41 | 2400 | (37730 +/- 815) x 10^4 |
1486 | 902008 | 1600 | (1450 +/- 32) x 10^4 |
1486 | 902008 | 1700 | (2185 +/- 54) x 10^4 |
1486 | 902008 | 1800 | (3293 +/- 90) x 10^4 |
1486 | 902008 | 1900 | (4786 +/- 106) x 10^4 |
1486 | 902008 | 2000 | (6492 +/- 202) x 10^4 |
1486 | 902008 | 2100 | (9264 +/- 232) x 10^4 |
1486 | 902008 | 2200 | (11528 +/- 269) x 10^4 |
1486 | 902008 | 2300 | (14472 +/- 352) x 10^4 |
1486 | 902008 | 2400 | (18779 +/- 506) x 10^4 |
1465 | 38 | 1600 | (2273 +/- 47) x 10^4 |
1465 | 38 | 1700 | (3557 +/- 76) x 10^4 |
1465 | 38 | 1800 | (5220 +/- 114) x 10^4 |
1465 | 38 | 1900 | (7794 +/- 168) x 10^4 |
1465 | 38 | 2000 | (11360 +/- 245) x 10^4 |
1465 | 38 | 2100 | (16012 +/- 349) x 10^4 |
1465 | 38 | 2200 | (21906 +/- 470) x 10^4 |
1465 | 38 | 2300 | (27741 +/- 601) x 10^4 |
1465 | 38 | 2400 | (31784 +/- 651) x 10^4 |
9614 | 502017 | 1600 | (890 +/- 20) x 10^4 |
9614 | 502017 | 1700 | (1467 +/- 32) x 10^4 |
9614 | 502017 | 1800 | (2279 +/- 48) x 10^4 |
9614 | 502017 | 1900 | (3430 +/- 71) x 10^4 |
9614 | 502017 | 2000 | (4923 +/- 109) x 10^4 |
9614 | 502017 | 2100 | (7180 +/- 163) x 10^4 |
9614 | 502017 | 2200 | (9938 +/- 208) x 10^4 |
9614 | 502017 | 2300 | (13235 +/- 323) x 10^4 |
9614 | 502017 | 2400 | (17755 +/- 408) x 10^4 |
1495 | 19 | 1600 | (551 +/- 19) x 10^4 |
1495 | 19 | 1700 | (825 +/- 22) x 10^4 |
1495 | 19 | 1800 | (1263 +/- 26) x 10^4 |
1495 | 19 | 1900 | (1801 +/- 41) x 10^4 |
1495 | 19 | 2000 | (2516 +/- 54) x 10^4 |
1495 | 19 | 2100 | (3381 +/- 79) x 10^4 |
1495 | 19 | 2200 | (4360 +/- 99) x 10^4 |
1495 | 19 | 2300 | (5813 +/- 132) x 10^4 |
1495 | 19 | 2400 | (7453 +/- 176) x 10^4 |
9650 | 68 | 1600 | (613 +/- 160) x 10^4 |
9650 | 68 | 1700 | (877 +/- 19) x 10^4 |
9650 | 68 | 1800 | (1344 +/- 28) x 10^4 |
9650 | 68 | 1900 | (2018 +/- 43) x 10^4 |
9650 | 68 | 2000 | (2916 +/- 63) x 10^4 |
9650 | 68 | 2100 | (4083 +/- 87) x 10^4 |
9650 | 68 | 2200 | (5654 +/- 122) x 10^4 |
9650 | 68 | 2300 | (7567 +/- 158) x 10^4 |
9650 | 68 | 2400 | (10030 +/- 210) x 10^4 |
9640 | 53 | 1600 | (2383 +/- 50) x 10^4 |
9640 | 53 | 1700 | (3836 +/- 83) x 10^4 |
9640 | 53 | 1800 | (6075 +/- 130) x 10^4 |
9640 | 53 | 1900 | (9193 +/- 199) x 10^4 |
9640 | 53 | 2000 | (13684 +/- 281) x 10^4 |
9640 | 53 | 2100 | (19866 +/- 438) x 10^4 |
9640 | 53 | 2200 | (27937 +/- 594) x 10^4 |
9640 | 53 | 2300 | (39124 +/- 866) x 10^4 |
9640 | 53 | 2400 | (54293 +/- 1133) x 10^4 |
9656 | 1 | 1600 | (927 +/- 22) x 10^4 |
9656 | 1 | 1700 | (1455 +/- 31) x 10^4 |
9656 | 1 | 1800 | (2242 +/- 54) x 10^4 |
9656 | 1 | 1900 | (3359 +/- 72) x 10^4 |
9656 | 1 | 2000 | (4950 +/- 117) x 10^4 |
9656 | 1 | 2100 | (7084 +/- 155) x 10^4 |
9656 | 1 | 2200 | (9734 +/- 209) x 10^4 |
9656 | 1 | 2300 | (13536 +/- 298) x 10^4 |
9656 | 1 | 2400 | (18374 +/- 405) x 10^4 |
9663 | 8 | 1600 | (1041 +/- 22) x 10^4 |
9663 | 8 | 1700 | (1702 +/- 36) x 10^4 |
9663 | 8 | 1800 | (2655 +/- 56) x 10^4 |
9663 | 8 | 1900 | (3963 +/- 81) x 10^4 |
9663 | 8 | 2000 | (5790 +/- 120) x 10^4 |
9663 | 8 | 2100 | (8292 +/- 172) x 10^4 |
9663 | 8 | 2200 | (11663 +/- 246) x 10^4 |
9663 | 8 | 2300 | (16024 +/- 330) x 10^4 |
9663 | 8 | 2400 | (21264 +/- 452) x 10^4 |
9586 | 30 | 1600 | (715 +/- 17) x 10^4 |
9586 | 30 | 1700 | (1180 +/- 25) x 10^4 |
9586 | 30 | 1800 | (1813 +/- 39) x 10^4 |
9586 | 30 | 1900 | (2738 +/- 57) x 10^4 |
9586 | 30 | 2000 | (4062 +/- 87) x 10^4 |
9586 | 30 | 2100 | (5940 +/- 123) x 10^4 |
9586 | 30 | 2200 | (8177 +/- 181) x 10^4 |
9586 | 30 | 2300 | (11423 +/- 241) x 10^4 |
9586 | 30 | 2400 | (15496 +/- 328) x 10^4 |
9590 | 66 | 1600 | (1123 +/- 24) x 10^4 |
9590 | 66 | 1700 | (1807 +/- 38) x 10^4 |
9590 | 66 | 1800 | (2795 +/- 58) x 10^4 |
9590 | 66 | 1900 | (4278 +/- 87) x 10^4 |
9590 | 66 | 2000 | (6327 +/- 130) x 10^4 |
9590 | 66 | 2100 | (9064 +/- 192) x 10^4 |
9590 | 66 | 2200 | (12722 +/- 266) x 10^4 |
9590 | 66 | 2300 | (17712 +/- 366) x 10^4 |
9590 | 66 | 2400 | (23953 +/- 491) x 10^4 |
9659 | 25 | 1600 | (571 +/- 23) x 10^4 |
9659 | 25 | 1700 | (899 +/- 19) x 10^4 |
9659 | 25 | 1800 | (1367 +/- 29) x 10^4 |
9659 | 25 | 1900 | (2085 +/- 44) x 10^4 |
9659 | 25 | 2000 | (2993 +/- 63) x 10^4 |
9659 | 25 | 2100 | (4239 +/- 90) x 10^4 |
9659 | 25 | 2200 | (5930 +/- 127) x 10^4 |
9659 | 25 | 2300 | (7980 +/- 171) x 10^4 |
9659 | 25 | 2400 | (10928 +/- 232) x 10^4 |
9609 | 701009 | 1600 | (962 +/- 23) x 10^4 |
9609 | 701009 | 1700 | (1551 +/- 33) x 10^4 |
9609 | 701009 | 1800 | (2420 +/- 52) x 10^4 |
9609 | 701009 | 1900 | (3708 +/- 81) x 10^4 |
9609 | 701009 | 2000 | (5476 +/- 119) x 10^4 |
9609 | 701009 | 2100 | (7963 +/- 184) x 10^4 |
9609 | 701009 | 2200 | (10745 +/- 274) x 10^4 |
9609 | 701009 | 2300 | (15003 +/- 431) x 10^4 |
9609 | 701009 | 2400 | (17681 +/- 407) x 10^4 |
9607 | 24 | 1600 | (548 +/- 61) x 10^4 |
9607 | 24 | 1700 | (954 +/- 25) x 10^4 |
9607 | 24 | 1800 | (1523 +/- 43) x 10^4 |
9607 | 24 | 1900 | (2275 +/- 58) x 10^4 |
9607 | 24 | 2000 | (3337 +/- 81) x 10^4 |
9607 | 24 | 2100 | (4699 +/- 112) x 10^4 |
9607 | 24 | 2200 | (6616 +/- 162) x 10^4 |
9607 | 24 | 2300 | (9476 +/- 218) x 10^4 |
9607 | 24 | 2400 | (12557 +/- 386) x 10^4 |
9636 | 71 | 1600 | (905 +/- 41) x 10^4 |
9636 | 71 | 1700 | (1424 +/- 42) x 10^4 |
9636 | 71 | 1800 | (2252 +/- 60) x 10^4 |
9636 | 71 | 1900 | (3535 +/- 95) x 10^4 |
9636 | 71 | 2000 | (5021 +/- 148) x 10^4 |
9636 | 71 | 2100 | (6922 +/- 186) x 10^4 |
9636 | 71 | 2200 | (9992 +/- 306) x 10^4 |
9636 | 71 | 2300 | (13823 +/- 324) x 10^4 |
9636 | 71 | 2400 | (19031 +/- 649) x 10^4 |
9639 | 65 | 1600 | (669 +/- 1251) x 10^4 |
9639 | 65 | 1700 | (706 +/- 31) x 10^4 |
9639 | 65 | 1800 | (1007 +/- 30) x 10^4 |
9639 | 65 | 1900 | (1566 +/- 41) x 10^4 |
9639 | 65 | 2000 | (2406 +/- 65) x 10^4 |
9639 | 65 | 2100 | (3453 +/- 87) x 10^4 |
9639 | 65 | 2200 | (4877 +/- 135) x 10^4 |
9639 | 65 | 2300 | (6690 +/- 163) x 10^4 |
9639 | 65 | 2400 | (8885 +/- 411) x 10^4 |
9611 | 502018 | 1600 | (1439 +/- 43) x 10^4 |
9611 | 502018 | 1700 | (2418 +/- 67) x 10^4 |
9611 | 502018 | 1800 | (3696 +/- 96) x 10^4 |
9611 | 502018 | 1900 | (5421 +/- 242) x 10^4 |
9611 | 502018 | 2000 | (7685 +/- 637) x 10^4 |
9611 | 502018 | 2100 | (11115 +/- 393) x 10^4 |
9611 | 502018 | 2200 | (17127 +/- 3000) x 10^4 |
9611 | 502018 | 2300 | (21820 +/- 1267) x 10^4 |
9611 | 502018 | 2400 | (27421 +/- 1437) x 10^4 |
9604 | 69 | 1600 | (476 +/- 73) x 10^4 |
9604 | 69 | 1700 | (916 +/- 28) x 10^4 |
9604 | 69 | 1800 | (1320 +/- 44) x 10^4 |
9604 | 69 | 1900 | (2097 +/- 52) x 10^4 |
9604 | 69 | 2000 | (2811 +/- 79) x 10^4 |
9604 | 69 | 2100 | (4037 +/- 135) x 10^4 |
9604 | 69 | 2200 | (5566 +/- 243) x 10^4 |
9604 | 69 | 2300 | (7765 +/- 332) x 10^4 |
9604 | 69 | 2400 | (9575 +/- 473) x 10^4 |
9635 | 23 | 1600 | (1280 +/- 39) x 10^4 |
9635 | 23 | 1700 | (2083 +/- 52) x 10^4 |
9635 | 23 | 1800 | (3285 +/- 90) x 10^4 |
9635 | 23 | 1900 | (4974 +/- 136) x 10^4 |
9635 | 23 | 2000 | (7181 +/- 234) x 10^4 |
9635 | 23 | 2100 | (10492 +/- 301) x 10^4 |
9635 | 23 | 2200 | (14381 +/- 612) x 10^4 |
9635 | 23 | 2300 | (20215 +/- 570) x 10^4 |
9635 | 23 | 2400 | (27891 +/- 1258) x 10^4 |
Position dependence of incident photon
Details on the step motor that are being used in the position dependence experiment can be found in the following links: